3.309 \(\int \frac{\tan ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=85 \[ \frac{2 b \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 d \sqrt{a-b} \sqrt{a+b}}-\frac{x}{a^2}+\frac{\tan (c+d x)}{a d (a+b \sec (c+d x))} \]

[Out]

-(x/a^2) + (2*b*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*Sqrt[a - b]*Sqrt[a + b]*d) + Tan[c +
 d*x]/(a*d*(a + b*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.145879, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3894, 4061, 12, 3783, 2659, 208} \[ \frac{2 b \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 d \sqrt{a-b} \sqrt{a+b}}-\frac{x}{a^2}+\frac{\tan (c+d x)}{a d (a+b \sec (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^2/(a + b*Sec[c + d*x])^2,x]

[Out]

-(x/a^2) + (2*b*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*Sqrt[a - b]*Sqrt[a + b]*d) + Tan[c +
 d*x]/(a*d*(a + b*Sec[c + d*x]))

Rule 3894

Int[cot[(c_.) + (d_.)*(x_)]^2*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[(-1 + Csc[c + d*x]
^2)*(a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0]

Rule 4061

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(
(A*b^2 + a^2*C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(
a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*(a^2 - b^2)*(m + 1) - a*b*(A + C)*(m + 1)*Csc[e + f*x] +
(A*b^2 + a^2*C)*(m + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && Int
egerQ[2*m] && LtQ[m, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3783

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(-1), x_Symbol] :> Simp[x/a, x] - Dist[1/a, Int[1/(1 + (a*Sin[c + d
*x])/b), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tan ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx &=\int \frac{-1+\sec ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx\\ &=\frac{\tan (c+d x)}{a d (a+b \sec (c+d x))}-\frac{\int \frac{a^2-b^2}{a+b \sec (c+d x)} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac{\tan (c+d x)}{a d (a+b \sec (c+d x))}-\frac{\int \frac{1}{a+b \sec (c+d x)} \, dx}{a}\\ &=-\frac{x}{a^2}+\frac{\tan (c+d x)}{a d (a+b \sec (c+d x))}+\frac{\int \frac{1}{1+\frac{a \cos (c+d x)}{b}} \, dx}{a^2}\\ &=-\frac{x}{a^2}+\frac{\tan (c+d x)}{a d (a+b \sec (c+d x))}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}+\left (1-\frac{a}{b}\right ) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^2 d}\\ &=-\frac{x}{a^2}+\frac{2 b \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 \sqrt{a-b} \sqrt{a+b} d}+\frac{\tan (c+d x)}{a d (a+b \sec (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.255037, size = 80, normalized size = 0.94 \[ -\frac{\frac{2 b \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\sqrt{a^2-b^2}}-\frac{a \sin (c+d x)}{a \cos (c+d x)+b}+c+d x}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^2/(a + b*Sec[c + d*x])^2,x]

[Out]

-((c + d*x + (2*b*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] - (a*Sin[c + d*x])/(b
+ a*Cos[c + d*x]))/(a^2*d))

________________________________________________________________________________________

Maple [A]  time = 0.065, size = 120, normalized size = 1.4 \begin{align*} -2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{d{a}^{2}}}-2\,{\frac{\tan \left ( 1/2\,dx+c/2 \right ) }{ad \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b-a-b \right ) }}+2\,{\frac{b}{d{a}^{2}\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^2/(a+b*sec(d*x+c))^2,x)

[Out]

-2/d/a^2*arctan(tan(1/2*d*x+1/2*c))-2/d/a*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-
b)+2/d*b/a^2/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 0.898244, size = 845, normalized size = 9.94 \begin{align*} \left [-\frac{2 \,{\left (a^{3} - a b^{2}\right )} d x \cos \left (d x + c\right ) + 2 \,{\left (a^{2} b - b^{3}\right )} d x -{\left (a b \cos \left (d x + c\right ) + b^{2}\right )} \sqrt{a^{2} - b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) -{\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt{a^{2} - b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) - 2 \,{\left (a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{2 \,{\left ({\left (a^{5} - a^{3} b^{2}\right )} d \cos \left (d x + c\right ) +{\left (a^{4} b - a^{2} b^{3}\right )} d\right )}}, -\frac{{\left (a^{3} - a b^{2}\right )} d x \cos \left (d x + c\right ) +{\left (a^{2} b - b^{3}\right )} d x -{\left (a b \cos \left (d x + c\right ) + b^{2}\right )} \sqrt{-a^{2} + b^{2}} \arctan \left (-\frac{\sqrt{-a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) -{\left (a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{{\left (a^{5} - a^{3} b^{2}\right )} d \cos \left (d x + c\right ) +{\left (a^{4} b - a^{2} b^{3}\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

[-1/2*(2*(a^3 - a*b^2)*d*x*cos(d*x + c) + 2*(a^2*b - b^3)*d*x - (a*b*cos(d*x + c) + b^2)*sqrt(a^2 - b^2)*log((
2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 + 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^
2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) - 2*(a^3 - a*b^2)*sin(d*x + c))/((a^5 - a^3*b^2)*d*c
os(d*x + c) + (a^4*b - a^2*b^3)*d), -((a^3 - a*b^2)*d*x*cos(d*x + c) + (a^2*b - b^3)*d*x - (a*b*cos(d*x + c) +
 b^2)*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c))) - (a^3 - a*b^
2)*sin(d*x + c))/((a^5 - a^3*b^2)*d*cos(d*x + c) + (a^4*b - a^2*b^3)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{2}{\left (c + d x \right )}}{\left (a + b \sec{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**2/(a+b*sec(d*x+c))**2,x)

[Out]

Integral(tan(c + d*x)**2/(a + b*sec(c + d*x))**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.49275, size = 194, normalized size = 2.28 \begin{align*} \frac{\frac{2 \,{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )} b}{\sqrt{-a^{2} + b^{2}} a^{2}} - \frac{d x + c}{a^{2}} - \frac{2 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a - b\right )} a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

(2*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c
))/sqrt(-a^2 + b^2)))*b/(sqrt(-a^2 + b^2)*a^2) - (d*x + c)/a^2 - 2*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*
c)^2 - b*tan(1/2*d*x + 1/2*c)^2 - a - b)*a))/d